Vectorization Efficiency Metrics

Zakhar A. Matveev, CJ Newburn

with input from Dmitry Prohorov, Hideki Saito

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Metrics list

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Vectorization Metrics

= Actual speed-up (could be: wall-clock, total, inclusive/exclusive):
= S =Time (Scalar Loop) / Time (Vector Loop)
= Efficiency = G/Max_S, Max_S <= Max_VL
= Gain/Efficiency:
» G =Scalar Loop Cost (cycles) / Vector Loop Cost (cycles)
» Efficency = G/Max_Gain, Max_G <= Max_VL

How much faster the vector iterations are? Reflects quality of compiler code-
generation.

Should be equal to S in case of VPU-bound codes

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization Metrics

= Path Reduction:
Scalar Loop Path (# instructions) / Vector Loop Path (# instructions)
Gives a sense of the fraction of non-vector (overhead) instructions in a loop
= Vector Utilization / Intensity (“elements active”) — only works on KNC
VPU_ELEMENTS_ACTIVE / VPU_INSTRUCTIONS_EXECUTED

Fraction of vector instructions that do work on vector registers. Reflect vector
registers utilization

If a mask bit is set for an element, it was presumed to be used. Drops for
branchy if-else codes

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intensity/Utilization

Advantage:

= Dynamically “measures” fraction of vector instructions that do work (mask-aware)

Disadvantages:

= Only available on KNC (other metrics could be computed on IVB or Broadwell)

= More work/utilization doesn’'t mean more speed-up (if you care)

= Some code may have good vector utilization, but scalar version could be faster than it!

= Shifts/shuffles/“misc.”, prefetch instructions are counted “inappropriately”.
= Assumption: Mask bits are only set for elements in which useful work is done

= This is false: Extra mask bits can be set, as long as there are no side effects.

- Th|s is per binary loop, so separate values for peel/remainder..

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Gain/Efficiency Estimate
Advantage:

» Accounts all nuances of vector vs. scalar assembly and maps it to speed-up

Disadvantages:
= Usually not available if you program in assembly/intrinsics.

= This is code generation performance model, not measurement. This doesn't
account dynamic mask values as well as other dynamic data (trip counts).

Advisor Gain/Efficiency:

» Recalculate (calibrate) Compiler Gain/Efficiency taking into account dynamic
knowledge of trip counts, peel-remainder times.

= But limited to Xeon right now.

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

intel. |

Tools to calculate metrics

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intensity/Utilization: VTune Amplifier XE
2016 Beta for KNC

™ General Exploration General Exploration viewpoint (change) @

B Collection Log| | @ Analysis Target|| * Analysis Type| |8 Summary|] SISCILEIY |+ Top-down Tree | | B Tasks and Frames

Grouping: | Function / Call Stack

Cache Usage Vectorization Usage

Function / Call Stack 7) :
5 L1 Hit Ratio |Estimated Latenc..]| Vectorization Intensityv |l§f1 Compute to D...|L2 Compute...

B Loop at line 137 in single_iteration] 0.684 162.181' 14.787 13.832 43.729

*[Outside any Loop] boo 0.974 417.034 9,500 0.084 3.276
*[Loop at line 81 in single_iteration] 3500 0.964 448.52 1.688 0.688 31.765
*[Loop@0x4e384 in func@Ox4e2da] " 0.999 0.000 0.000 0.000
*[Loop@0x52ec8 in _IO_vfscanf] H 0.000 0.000 0.000
*[Loop at line 195 in compute_tran_temp] ‘ 0.000 0.000 0.000
*[Loop@0x53450 in _IO_vfscanf] ‘ 1.000 \, 0.000.4 0.000 0.000

Part of Intel Parallel
Studio XE 2016

VTune: General Exploration Analysis Type

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Gain/Efficiencty: Intel Compiler (>=15.x

Intel Compiler:
-O2 -opt-report5

Part of Intel Parallel

Studio XE 2016

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Gain/Efficiencty: Advisor XE 2016 Beta

(for Xeon only)

| Elapsed time: 5,465 | | | | (] | FILTER: [AI.I. Modules "] [AH Sources -
_ Vectorized Loops

Loops Loop Type elf Time Vecto, ﬁficienqv Estirnated Gain\\
[eop in fCollisicnBGK at lbpBGK.cpp:E40] Vectorized: Expand 0.020<1 AVK | 100% . | 205
[loop in fGetFracsite at IbpGET.cppil52] Vectorized: Expand 0.030s10 AVK | 36% | 240
20 [loop in fGetOneMassSite at IbpGET.cpp: ... 2,86
=¥ [loop in fGetEquilibriumF at IbpSUB.cpp:729] Vectorized: Collapse 0.57%= ANV | 25% | 200

[loop in fGetEquilibriumF at IbpSUB.cpp: ... Vectorized (Body) 043100 AWK

[loop in fGetEquilibriumF at IbpSUB.cpp: ... Vectorized (Remainder) 0.087=1 AWK

(2105 [loop in fGetEquilibriumF at IbpSUB.cpp: ... Remainder 0.061=1
[loop in fPropagationSwap at lbpSUB.cppil ... Vectorized (Body) 1,259 DI | AN \[ll#'}é . 0,54 /

Part of Intel Parallel _ _
Studio XE 2016 Advisor : Survey Analysis Type

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Some word on methodology..

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

WHAT to measure?

Actual Speed-up vs. Efficiency vs. Intensity. ?77?

= Measuring all and comparing results —

is “useful enough” exercise already.

= Normally stick with at least one of them for workshop exercises.

Kernel vs. Sub-part vs. Workload ??

= Per-workload speed-up/efficiencies are lower than per-kernel (Amdahl’s law)
= Both are important to understand, but don't mix them up!

= For big HPC codes you rarely even look into everything. Define sub-set.

= Measuring / establishing proper baselines is very important/not-trivial itself

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Some take-aways

Vectorization efficiency/gain

= Take it as input, but treat it as performance estimate

= Use Advisor if you want to overcome some of “static code-generation knowledge”
limits

Vectorization intensity

= Take itas input, but don't treat it as accurate:

» Low intensity definitely means you have an issue. Otherwise — who knows.
= If higher than expected, inspect code for masks that are all 1 even through conditionals

» The VPU_ELEMENTS_ACTIVE won't be available for anything other than KNC
Don’t compare apples with oranges (kernel and workload, etc)

Don’t mix up dimensional and non-dimensional metrics

intel. |

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

